Getting Started

Welcome to Linkerd! 🎈

In this guide, we’ll walk you through how to install Linkerd into your Kubernetes cluster. Then we’ll deploy a sample application to show off what Linkerd can do.

This guide is designed to walk you through the basics of Linkerd. First, you’ll install the CLI (command-line interface) onto your local machine. Using this CLI, you’ll then install the control plane onto your Kubernetes cluster. Finally, you’ll “mesh” a application by adding Linkerd’s data plane to it.

Step 0: Setup

Before anything else, we need to ensure you have access to modern Kubernetes cluster and a functioning kubectl command on your local machine. (If you don’t already have a Kubernetes cluster, one easy option is to run one on your local machine. There are many ways to do this, including kind, k3d, Docker for Desktop, and more.)

Validate your Kubernetes setup by running:

kubectl version --short

You should see output with both a Client Version and Server Version component.

Now that we have our cluster, we’ll install the Linkerd CLI and use it validate that your cluster is capable of hosting Linkerd.

(Note: if you’re using a GKE “private cluster”, there are some extra steps required before you can proceed to the next step.)

Step 1: Install the CLI

If this is your first time running Linkerd, you will need to download the linkerd CLI onto your local machine. The CLI will allow you to interact with your Linkerd deployment.

To install the CLI manually, run:

curl -fsL https://run.linkerd.io/install | sh

Be sure to follow the instructions to add it to your path.

(Alternatively, if you use Homebrew, you can install the CLI with brew install linkerd. You can also download the CLI directly via the Linkerd releases page.)

Once installed, verify the CLI is running correctly with:

linkerd version

You should see the CLI version, and also Server version: unavailable. This is because you haven’t installed the control plane on your cluster. Don’t worry—we’ll fix that soon enough.

Step 2: Validate your Kubernetes cluster

Kubernetes clusters can be configured in many different ways. Before we can install the Linkerd control plane, we need to check and validate that everything is configured correctly. To check that your cluster is ready to install Linkerd, run:

linkerd check --pre

If there are any checks that do not pass, make sure to follow the provided links and fix those issues before proceeding.

Step 3: Install the control plane onto your cluster

Now that you have the CLI running locally and a cluster that is ready to go, it’s time to install the control plane. To do this, run:

linkerd install | kubectl apply -f -

The linkerd install command generates a Kubernetes manifest with all the core control plane resources (feel free to inspect this output if you’re curious). Piping this manifest into kubectl apply then instructs Kubernetes to add those resources to your cluster.

Depending on the speed of your cluster’s Internet connection, it make take a minute or two for the control plane to finish installing. Wait for the control plane to be ready (and verify your installation) by running:

linkerd check

Step 4: Install the demo app

Congratulations, Linkerd is installed! However, it’s not doing anything just yet. To see Linkerd in action, we’re going to need an application.

Let’s install a demo application called Emojivoto. Emojivoto is a simple standalone Kubernetes application that uses a mix of gRPC and HTTP calls to allow the user to vote on their favorite emojis.

Install Emojivoto into the emojivoto namespace by running:

curl -fsL https://run.linkerd.io/emojivoto.yml | kubectl apply -f -

This command installs Emojivoto onto your cluster, but Linkerd hasn’t been activated on it yet—we’ll need to “mesh” the application before Linkerd can work its magic.

Before we mesh it, let’s take a look at Emojivoto in its natural state. We’ll do this by forwarding traffic to its web-svc service so that we can point our browser to it. Forward web-svc locally to port 8080 by running:

kubectl -n emojivoto port-forward svc/web-svc 8080:80

Now visit http://localhost:8080. Voila! You should see Emojivoto in all its glory.

If you click around Emojivoto, you might notice that it’s a little broken! For example, if you try to vote for the donut emoji, you’ll get a 404 page. Don’t worry, these errors are intentional. (In a later guide, we’ll show you how to use Linkerd to identify the problem.)

With Emoji installed and running, we’re ready to mesh it—that is, to add Linkerd’s data plane proxies to it. We can do this on a live application without downtime, thanks to Kubernetes’s rolling deploys. Mesh you Emojivoto application by running:

kubectl get -n emojivoto deploy -o yaml \
  | linkerd inject - \
  | kubectl apply -f -

This command retrieves all of the deployments running in the emojivoto namespace, runs their manifests through linkerd inject, and then reapplies it to the cluster. (The linkerd inject command simply adds annotations to the pod spec that instruct Linkerd to inject the proxy into the pods when they are created.)

As with install, inject is a pure text operation, meaning that you can inspect the input and output before you use it. Once piped into kubectl apply, Kubernetes will execute a rolling deploy and update each pod with the data plane’s proxies.

Congratulations! You’ve now added Linkerd to an application! Just as with the control plane, it’s possible to verify that everything is working the way it should on the data plane side. Check your data plane with:

linkerd -n emojivoto check --proxy

And, of course, you can visit http://localhost:8080 and once again see Emojivoto in all its meshed glory.

Step 5: Explore Linkerd!

Perhaps that last step was a little unsatisfying. We’ve added Linkerd to Emojivoto, but there are no visible changes to the application! That is part of Linkerd’s design—it does its best not to interfere with a functioning application.

Let’s take a closer look at what Linkerd is actually doing. To do this, we’ll need to install an extension. Linkerd’s core control plane is extremely minimal, so Linkerd ships with extensions that add non-critical but often useful functionality to Linkerd, including a variety of dashboards.

For this guide, we will need one of:

  1. The viz extension, which will install an on-cluster metric stack; or
  2. The buoyant-cloud extension, which will connect to a hosted metrics stack.

You can install either or both extensions. To install the viz extension, run:

linkerd viz install | kubectl apply -f - # install the on-cluster metrics stack

To install the buoyant-cloud extension, run:

curl -fsL https://buoyant.cloud/install | sh # get the installer
linkerd buoyant install | kubectl apply -f - # connect to the hosted metrics stack

Once you’ve installed your extensions, let’s validate everything one last time:

linkerd check

With the control plane and extensions installed and running, we’re now ready to explore Linkerd! If you installed the viz extension, run:

linkerd viz dashboard &

You should see a screen like this:

The Linkerd dashboard in action
The Linkerd dashboard in action

If you installed the buoyant-cloud extension, run:

linkerd buoyant dashboard &

You should see a screen lke this:

The Buoyant Cloud dashboard in action
The Buoyant Cloud dashboard in action

Click around, explore, and have fun! See if you can find the live metrics for each Emojivoto component, and determine which one has a partial failure. (See the debugging tutorial below for much more on this.)

That’s it! 👏

Congratulations, you have joined the lofty, exalted ranks of Linkerd users! Give yourself a pat on the back.

What’s next? Here are some steps we recommend:

Above all else: welcome to the Linkerd community!